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Abstract

We divide this paper into 6 major sections.

1. Introduction presents the key problem, its motiva-
tion, definition, and background

2. Related work review state of art approaches and
our focus

3. Methods details our technical steps and design de-
cisions

4. Data presents important data construction details
5. Experiments covers our results and observations

6. Conclusion summarizes our findings and contribu-
tions

1. Introduction
1.1. Problem definition

This work focus on the problem of generating 3D
model from 2D image(s).

Concretely, as input, we are given a set of N images
{(IWXHXC=3)N 1" each with height H, width W and
color channels C' = 3. These images are unposed and
camera parameters are unknown.

Our objective is to generate a corresponding set of
per-pixel 3D points—commonly referred to as a point
map {(XWXHXD=3)N 1 where D = 3 for 3D space
coordinates, typically in world frame of the first image.

We also like to estimate camera intrinsics K € R3*3,
as well as a set of pose P that transform coordinates
from the camera frame m to a shared world coordinate

system.
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where f, and f, are focal length in pixels along = and
y axes on image plane, and c; and ¢, are coordinates
of the principal point (typically near the image center).

1.2. Motivation

This is a challenging yet fundamental problem in
computer vision. We pursue this problem from both
practical use point of view, to assess current approaches
and state of art choice. We also approach it from in-
tellectual point of view, aiming to unravel the inner
working of solutions, by modifying one such model and
retrain it, and by developing a visualization for another
model.

1.3. Main results

We demonstrated the validity of the SOA approach
in real data generation - using Structure-from-Motion
(SIM [I]) software of Colmap [2], we are able to
provide a ground truth data point of object focused
images, along with camera parameters, and point map
and depth map for each image.

With above data point as running example, we com-
pared the model produced by the following different ap-
proaches. We calculate Earth Mover’s Distance (EMD)
and Chamfer distances (defined in later section) for
discriminative models. All these establish that VGGT
model is SOA in terms of fidelity and speed.

o combining off-the-shelf models (GroundingDino
[B], SegmentAnything [4], DepthAnything [5])

o discriminative models (Dust3R [6], Fast3R [{],
VGGT [§)])



o generative models (3D-LMNet [9], Point-E [[10]),
and LRM [11]

For 3D-LMNet, we modify its architecture by
introducing DG-CNN for point of cloud auto encoder,
and DINO for 2D image encoder. We are able to train
for a few epochs on ShapeNet dataset. We observe the
improvement of generated point of cloud model.

For VGGT model, we measure the impact on gener-
ated model quality and inference speed, when we input
a varying number of images. We find inference time is
O(nlogn) with n being number of input images. We
also find in general, more images lead to better model
quality. We also develop a visualization tool that shows
the inter image attention mask, for any patch at source
image, w.r.t all other images. This helps us to begin
to understand the most important factor for this SOA
performance.

1.4. Background

Physical understanding begins with modeling the
spatial structure of objects and scenes in our world.
Reconstructing 3D structures from 2D images is a
long-standing goal in computer vision, as it forms the
foundation for interpreting the visual world. This
capability has broad applications across industrial
design, animation, gaming, augmented and virtual

reality (AR/VR), and robotics.

Traditional — Structure-from-Motion (SfM) ap-
proaches, exemplified by systems like COLMAP, rely
heavily on multi-view geometry and require accurate
calibration of both camera intrinsics and extrinsics.
While widely adopted, these methods are often com-
putationally intensive and may fail to converge in
challenging scenarios..

Recent advances in deep learning have led to
significant progress in 3D reconstruction methods
that no longer require known camera parameters
at inference time—that is, input images can be
unposed, with no prior calibration. This shift has
been driven by improvements in 3D datasets (both
synthetic and real-world), scalable training infrastruc-
ture, and innovations in deep learning architectures.
State-of-the-art methods leverage transformer-based
architectures—particularly self-attention and cross-
attention mechanisms—to allow image embeddings
to interact and jointly infer the 3D structure of a
scene. Foundational models such as VGGT unify
multiple tasks within a single backbone, including
camera parameter estimation, relative and global pose
prediction, per-pixel point mapping, and dense point

cloud reconstruction.

In 3D object reconstruction from one or a few
images of the same scene, the goal is to recover a
3D model of the central object. The ground truth
typically consists of image-model pairs, along with
corresponding camera poses and intrinsic parameters.
However, all the models explored in this work perform
inference without access to camera pose or intrinsics—
they require only one or more images of the same scene.

We adopt point clouds as the primary 3D repre-
sentation in most of our learning-based models. Point
clouds (PC) offer an explicit, lightweight structure
that facilitates both quantitative comparison and fast
rendering. For broader comparison, we also include
the LRM model, which generates NeRF and mesh
representations in addition to point clouds.

Reconstructing high-fidelity 3D structure at in-
ference time—especially from uncalibrated cameras
and unposed images—is a fundamentally challenging
and ill-posed problem. Humans perform this task
effectively by leveraging extensive prior knowledge
about object shapes, spatial configurations, and scene
semantics.  Learning-based models must similarly
compensate for the absence of full geometric specifica-
tions by incorporating both 2D scene understanding
and 3D shape priors. For instance, DINO [13] em-
beddings capture rich 2D perceptual features, while
architectures such as PointNet [14], DGCNN [15],
and various encoder—decoder models for point clouds
encode 3D structural knowledge. Successfully training
such models typically requires large-scale datasets,
often exceeding one million images and corresponding
3D point cloud models.

Over the years, the input images for these learning
models have evolved to become increasingly diverse
and realistic. Early datasets consisted of simple,
category-based, computer-generated images—such as
ShapeNet used in 3D-LMNet. More recent datasets,
like Objaverse [16] and MVImgNet [17] used in LRM,
feature a broader range of real-world object images
often presented against white backgrounds. The
latest datasets, such as Co3D [L§] used in VGGT,
contain diverse real-world scene images with complex
backgrounds and varying contexts.

Learning model architectures typically follow either
a discriminative approach, framing the task as a re-
gression problem, or a generative approach, employing
autoencoders and diffusion models conditioned on in-



put images. Increasingly, architectures are designed to
promote coupling and self-consistency among multiple
observed images, reducing the need for explicit induc-
tive biases in model design.

2. Related work

There are broadly four categories of approaches, pre-
sented here in chronological order.

2.1. SfM (structure of motion) based approach

Structure-from-Motion (SfM) is effective when
consecutive images contain a large overlapping portion
of the scene. Given a 3D point and the optical centers
of two consecutive images, epipolar geometry defines
the relationship between corresponding points. Using
epipolar constraints, SfM determines the intersection
of rays projecting from each camera’s optical center
through matching image points, thereby estimating
the 3D location of the point. Additionally, global
consistency is improved through bundle adjustment,
which refines 3D estimates by jointly optimizing cam-
era poses and 3D points—especially when a sequence
of images forms a loop closure.

The dominant offline solution currently is
COLMAP, a battle-tested and widely adopted
system known for its high accuracy. It emphasizes
precision and detail rather than real-time perfor-
mance. Given a collection of unposed, unordered
images, COLMAP can estimate camera intrinsics and
poses, and reconstruct per-image point maps. These
point maps can then be fused into a dense 3D model,
represented as a point cloud or a mesh. Like other
methods in this category, COLMAP requires substan-
tial computational resources—particularly, its dense
stereo reconstruction step (patchimatchistereo)
relies on GPU acceleration.

The leading real-time online solution, often used in
SLAM (Simultaneous Localization and Mapping), is
DROID-SLAM (Deep Visual SLAM) [19]. It priori-
tizes speed, robustness, and adaptability to dynamic
environments by combining classical geometric meth-
ods with deep neural networks. Given a sequence of
ordered images, DROID-SLAM continuously localizes
the camera while incrementally building a map of the
environment.

Our study focuses on reconstructing objects from
an unordered set of images in an offline setting, unlike
SLAM methods which primarily focus on camera pose
estimation. To establish ground truth dense models of
objects, we use COLMAP as our reference system.

2.2. Combination of specialized learning based
models

When camera intrinsics are known, a single image
can provide sufficient information to reconstruct a 3D
point cloud of the central object. By leveraging 2D per-
ceptual priors—such as those from models like DINO—
and applying established deep learning models trained
for single-image depth or correspondence estimation,
depth values can be inferred for each pixel. Combining
these per-pixel depth estimates with the known camera
intrinsics enables projecting the image into 3D space,
thereby generating a point cloud representation.

2.2.1 2D perceptive model

State-of-the-art models have evolved from CNN-based
supervised approaches to self-supervised transformer-
based methods. The latter offer superior model
expressiveness and scalability, benefiting from large
unlabeled datasets. Most of these models are trained
on millions of images.

For example, MAE (Masked Autoencoder) [20]
learns low- to mid-level features by reconstructing
missing parts of images, optimizing an L2 reconstruc-
tion loss. In contrast, DINO (Self-Distillation with No
Labels) learns mid- to high-level features by enforcing
consistency between feature representations from a
student network and a teacher network (which uses
exponential moving average weights). This is done via
a cross-entropy loss over softmaxed features computed
from differently transformed versions of the same
image.

In our work, we explore 3D-LMNET for 3D point
cloud generation, which requires rich semantic image
information. To enhance the expressiveness of the im-
age encoder, we replace the original custom convolu-
tional encoder with DINO.

2.2.2 Language-Prompted Object detection model

These models typically include dual encoders for
language and images, cross-modal fusion mechanisms
to facilitate interaction and alignment, and an image
decoder that predicts bounding boxes and object
probabilities. Open-vocabulary and zero-shot detec-
tion capabilities are enabled by strong visual-semantic
alignment.

YOLO-World [21] combines CNN and CLIP [22]
encoders and fuses them with RepVL-PAN (Re-
parameterizable Vision-Language Path Aggregation



Network). Its prompt-then-detect paradigm allows
real-time performance, though with slightly reduced
accuracy.

GroundingDINO [B] integrates DINO and GLIP,
enhanced with feature fusion techniques, achieving
higher accuracy at the cost of increased computational
resources.

Since our study is offline and prioritizes high accu-
racy, we adopt GroundingDINO as our detection back-
bone.

2.2.3 Segmentation model

Encoder-decoder architectures are commonly used
for image segmentation to produce dense, pixel-wise
predictions. Typically, the encoder backbone is based
on CNNs or Vision Transformers (ViT), while the
decoder employs upsampling layers such as transposed
convolutions, U-Net [23], FCN [24], or DPT [25], often
with skip connections to preserve spatial details.

DINO combined with k-means clustering forms a
self-supervised model that uses contrastive loss. It
provides class-agnostic masks with moderate accu-
racy and a medium model size ( 80 million parameters).

DeepLabV3 [26] is a supervised segmentation model
delivering high semantic segmentation accuracy with
a medium model size ( 60 million parameters).

SAM (Segment Anything Model) [4] is a foundation
model that offers zero-shot segmentation with excel-
lent accuracy, but at a much larger scale ( 2 billion
parameters).

Since our study is offline, requires high accuracy, and
does not need semantic segmentation, we adopt SAM
for mask generation.

2.2.4 Depth estimation model

The encoder-decoder structure with skip connections is
a standard architecture in monocular depth estimation
models. The encoder typically uses CNNs or Vision
Transformers (ViTs) [25], while the decoder employs
transposed convolutions or upsampling methods such
as bilinear or nearest-neighbor interpolation.

MiDaS [27] leverages ResNet and ViT backbones
to deliver fast, zero-shot predictions of relative depth.
It achieves moderate accuracy with a medium-sized

model ( 300M parameters).

DepthAnything [p], also ViT-based, provides zero-
shot relative depth estimation with high accuracy. It
operates at a moderate inference speed and has a large
model size ( 600M parameters).

ZeroDepth [28] uses a DPT backbone to predict
metric depth maps in a zero-shot manner. It offers
high accuracy but slower inference speed, with a
medium model size ( 300M parameters).

Metric3D [29], [BO] is also a more recent SOTA
model to predict depth.

Since our objective is high-accuracy relative depth
estimation, and for comnsistency with reconstruction
models that operate in relative scale, we adopt the
DepthAnything model.

2.3. 3D reconstruction from unposed image(s)

3D reconstruction generally involves a multi-stage
architecture that jointly estimates camera parameters
and 3D scene representations. These pipelines typically
consist of: a feature extraction backbone (e.g., ResNet,
ViT, or DINO), an attention-based feature alignment
or matching module, and prediction heads for camera
intrinsics/extrinsics, per-pixel depth, or dense point
maps.

There are three common output formats for 3D rep-
resentations:

1. 3D Point Cloud (PC) models generate raw point
sets or meshes.

2. NeRF [B1] models reconstruct continuous radiance
fields.

3. 3D Gaussian Splatting (3DGS) [32] models output
point clouds augmented with learned Gaussian pa-
rameters.

Until recently, only 3D PC-based models were
capable of handling unposed and uncalibrated images.
However, recent advances have extended this capa-
bility to implicit representations. Notably, LRM (a
NeRF-style model) can reconstruct 3D scenes from a
single unposed image, and Dust3R demonstrates the
ability to handle multiple unposed views in a point
cloud-based framework.

Each representation has trade-offs:

« 3D PC models are well-suited for robotics, SLAM,
and general-purpose scene understanding, due to
their explicit and interpretable structure.



e NeRF and 3DGS models excel in high-fidelity ren-
dering and real-time AR/VR applications, owing
to their photorealism and differentiable rendering
techniques.

Traditionally, NeRF and 3DGS models rely on
differentiable rendering and require multiple posed
views. NeRF leverages volume rendering, while 3DGS
projects 3D Gaussians onto the 2D image plane. In
contrast, 3D PC models typically avoid differentiable
rendering and operate on single, unposed views. This
distinction is now blurring: LRM shows implicit
representations can work with a single unposed image,
while Dust3R advances 3D PC models to multi-view
unposed scenarios.

In this study, we focus on 3D PC-based models,
given their compatibility with unposed input and
explicit reconstruction. As a point of comparison,
we also examine LRM, which generates implicit 3D
representations (e.g., SDF, NeRF) from a single
unposed image, from which meshes and point clouds
can be extracted.

We now proceed to survey state-of-the-art methods
in 3D point cloud reconstruction, organized by the dis-
criminative vs. generative modeling paradigm.

2.3.1 Discriminative approach

Discriminative models reconstruct 3D point clouds by
explicitly inferring geometry from input images us-
ing cues such as correspondence, depth, or structure.
These models are typically formulated as supervised
regression tasks. They follow a standard pipeline: en-
coding image(s) into latent representations, performing
frame-wise and global cross-attention for alignment,
and mapping the aggregated features to a 3D point
map prediction.

1. DUSt3R employs a transformer-based encoder
(CroCo, similar to DINO) to extract rich image
features. It uses cross-attention between embed-
dings of two images to form a fused representation,
which is then decoded to predict both the 3D point
map and camera poses. However, it is limited to
two input images, and for handling more than two
views, it must perform global alignment at run-
time, resulting in an O(N?) complexity.

2. Fast3R addresses the scalability limitation of
DUSt3R by introducing a frame index embed-
ding, which enables fusion of an arbitrary number
of images. It operates in two stages: first, per-
view ViTs extract tokens independently; second, a

global fusion layer aligns tokens across views us-
ing cross-attention. This design removes the two-
image constraint while preserving the ability to
integrate multiple perspectives.

3. VGGT represents the current state-of-the-art. It
is designed as a vision foundation model, jointly
predicting multiple vision-related quantities—
camera intrinsics and extrinsics, per-pixel depth
and point maps, confidence scores, and tracking
keypoints—using a shared backbone. Its key ar-
chitectural innovation is a stack of 24 alternating
attention blocks, each consisting of a frame-level
attention layer followed by a global attention layer.
Like other recent models, it uses DINO as its im-
age feature extractor and DPT for dense per-pixel
prediction.

We evaluate all three models—DUSt3R, Fast3R,
and VGGT—on our ground truth examples to bench-
mark their effectiveness and limitations in reconstruct-
ing 3D point clouds from unposed image sets.

2.3.2 Generative approach

Generative models synthesize 3D point clouds from
latent features, text, or images using architectures
such as autoencoders, diffusion models, or normaliz-
ing flows. These models are also typically formulated
as supervised regression tasks. At inference time, they
condition the generation of 3D representations—such
as point clouds or NeRFs—on input images.

1. PointFlow [33] employs PointNet [[14] to generate
a latent code for each 3D point. A continuous nor-
malizing flow (CNF) then models the distribution
of these latent codes. Finally, a decoder recon-
structs the 3D point cloud. Although PointFlow
performs unconditional generation, it provides a
strong foundation for extending into conditional
3D generation using flows.

2. 3D-LMNet is a two-stage model. It first trains a
variational autoencoder (VAE) on 3D point cloud
data, using PointNet as the encoder. The decoder
from this VAE is then combined with a separate
image encoder (originally CNN-based) to learn
mappings from image-to-point cloud pairs. It is
trained on the ShapeNet dataset. In our work, we
replace the CNN encoder with DINO to improve
semantic expressiveness.

3. Point-E is a diffusion-based generative model.
During inference, it typically uses GLIDE to gen-
erate synthetic images. In its second stage, a CLIP



encoder extracts image embeddings, which con-
dition a diffusion model to generate a coarse 3D
point cloud (1K points). A third-stage diffusion
model then upsamples this to a high-resolution
point cloud (4K points). In our study, we bypass
the first GLIDE stage and directly input real im-
ages into the second stage.

4. LRM (Large Reconstruction Model) represents 3D
by NeRF representation. It does not learn the
NeRF MLP directly like traditional NeRF. It ac-
cepts a single unposed image (preferably with a
white background) and predicts a NeRF, from
which mesh or point cloud representations can be
extracted. During training, DINO-generated im-
age features and position encodings are fused via
cross-attention layers, guided by camera features.
The latent features are passed through deconvolu-
tion layers and an MLP to produce a NeRF field.
At inference time, the autoencoder directly con-
ditions on a single image to output the predicted
NeRF.

We evaluate the last three models—3D-LMNet,
Point-E, and LRM—on our ground truth examples to
assess their effectiveness for real-world 3D reconstruc-
tion from unposed images.

3. Methods
3.1. Design decision

At high level, we comes from the angle of practical
application. We find it is rather grounded to use
the same real world ground truth data point, to test
performance of competing models. As background
section shows, our choice of models is driven by
pragmatism and established research results.

From pedagogical and realistic point, we decide to
use 3D-LMNET for in depth investigation. Among all
models above, only 3D-LMNET stands at around 10M
parameters, that affords a training on T4 or V100
for a couple of hours for a few epoch. All the other
models stands at at least 500M parameters beyond,
out of our machine resource reach. We take the path
of modifying 3D-LMNET architecture with better
subcomponent, and retrain with the same ShapeNet
data, which is around 100K instances.

VGGT model does not yet have full training code re-
leased. We focus on experiments on its inference code,
by varying numbers of input images, and by visual-
ization through an innovative approach to capture the
attention masks from its global blocks.

3.2. Produce PC model from a single image via
Combination of specialized learning based
models

There are steps to produce a PC from a single input
image

1. Camera intrinsics are obtained either from
COLMAP (see discussion in the Data section) or
inferred using the Fast3R model (see subsection
below).

2. Run the GroundingDINO model on the image with
the text prompt "Miffy toy” to obtain a bounding
box.

3. Run the SAM model on the image, using the
bounding box from the previous step and a point
on the target object as constraints, to produce an
object mask.

4. Run the DepthAnything model on the image to
obtain a depth map.

5. Multiply the object mask with the depth map to
extract the depth information corresponding to
the target object.

6. Apply perspective projection, using the intrinsics
from Step 1, to recover the 3D point cloud of the
object.

Most of the models require GPU acceleration;
therefore, we conduct our experiments on an AWS
T4 instance. We use the ground truth data point
(frame_ 003.png) as the input image. Code references
are provided in the Appendix.

3.3. Produce PC model from Discriminative models

We run inference on our ground truth data point to
generate 3D point clouds using each of the discrimina-
tive models.

1. DUSt3R is evaluated with both 2 and 5 input im-
ages to assess the impact of input image count.

2. Fast3R is evaluated with 5 input images.
3. VGGT is evaluated with 5 input images.
All inference steps are successfully executed on a

Mac M1 system. Code references are provided in the
Appendix.



3.4. Produce PC model from Generative models

We run inference on our ground truth data point to
generate 3D point clouds using each of the generative
models.

1. 3D-LMNet takes a single input image.

2. Point-E is evaluated with both 1 and 3 input im-
ages to assess the impact of input image count.

3. LRM uses 5 input images and is capable of pro-
ducing both video and mesh representations.

These models require GPU support; thus, we con-
duct our experiments on an AWS T4 instance.

3.5. Assessing attention weights from different im-
ages for a VGGT model

These are the steps taken to assess the attention
weights:

1. We modified the VGGT model (in attention.py)
and the inference code to expose the attention
weights from the last layer of the global blocks.

2. We performed inference on 5 images and extracted
the actual attention weights.

3. We visualized the relative attention weights across
the images for a selected 3D point.

All these steps were executed on a Mac M1. The
code references are provided in the Appendix.

3.6. Impove the 3D-LMNet model

3D-LMNET training on ShapeNet is barely small
enough for us to perform rudimentary training (full
training requires several days). We were able to
complete training and evaluation using the original
codebase, albeit stopping at a fraction of the recom-
mended full training epochs.

We modified the architecture by leveraging the
stronger expressive power of DINO as the image
feature extractor, replacing the original custom CNN
feature extractor. DG-CNN has demonstrated superior
performance in segmentation and classification, partic-
ularly in representing local neighborhood features with
only O(Nlog N) complexity. Therefore, we replaced
the original PointNet encoder in the autoencoder with
DG-CNN. We successfully trained the modified model
and used it for inference to generate 3D point clouds
conditioned on input images.

For implementation, we find these help improve the
model learning

o We unfroze the last two layers of DINO to allow
more capacity for fine tuning

e We add repulsion loss via knn distance to promote
point distribution uniformity and to reduce point
clustering

o We improve upon the original training code to al-
low checkpoint and train from the checkpoint.

o We also integrate tensorboard so we can track and
debug the training process.

We observed that the learning rate for autoencoder
training could be significantly increased. We also
adjusted the batch size to avoid GPU out-of-memory
errors while maximizing GPU utilization.

The T4 GPU is underpowered for training; we found
that a V100 machine on GCP is up to four times faster.
The code references are provided in the Appendix.

3.7. Study on VGGT model

We vary the number of images feed into VGGT
model at inference time to assess the impact on
inference time and model quality. We again measure
quality by Chamfer and EMD distances. We use input
size 1, 5, 10, 15, 20. The images are picked uniformly
and evenly on a 360 degree video around a Miffy toy.

To visualize the inter image attention mask, we build
a visualization tool based on these algorithms

e Correspondence

— We would like to find all corresponding pixel
on other images, when we click one pixel on
a source image

— The source pixel at source image, can be pro-
jected to its 3D point, given the depth map
and camera parameters produced by VGGT
model.

— That 3D point can then be projected back to
other images, given camera poses produced
by VGGT model

— The reprojected pixel will be checked to en-
sure that are within corresponding image’s
boundary.

o Capture of attention mask during inference

— We modify attention layer to output atten-
tion mask

— We modify VGGT model to use the modi-
fied attention layer and store attention mask
value



e Summary of layers of attention masks
— At each layer, we max over head dimension,
then discard lowest attention values

— We accumulate the product of attention mask
through each layer

A=(A+1)/2 2)
A
A=so (3)

¢ Presentation

— Due to the asymmetry of the attention ma-
trix, we use a grid layout where the first col-
umn contains the source images, and subse-
quent columns show attention maps on the
target images.

— Selecting a pixel in any source image re-
veals its corresponding locations in the other
source images.

— For each selected source pixel, a correspond-
ing patch is extracted, and the summarized
global attention is visualized across the coun-
terpart images.

4. Dataset

One of major challenge in 3D model reconstruction
research is the difficulty to prepare ground truth data.
Currently, there are two approaches

e Computer generate data

— When we define a 3D model, we can use com-
puter graphics technique to generate images
from arbitrary angle and lightning condition

— This method can generate unlimited number
of data points, yet there is always gap be-
tween reality and virtual scene

¢ Real world data

— Either hardware or software based (SfM)
method can help us produce camera pose esti-
mate, and therefor 3D model of scene object,
over real world video.

— While this method requires considerable com-
putational resources, it achieves a degree of
realism that is unparalleled.

We use the first approach when training 3D-LMNET
model, and use the second approach to prepare our
running example of ground truth datapoint.

4.1. Prepare our ground truth data point for infer-
ence

The ground truth data point was produced through
a data processing pipeline.

e We began by capturing a 14-second video of a
Mifty toy indoors using iPhone 13, covering a full
360-degree view of the scene.

o From the video, 42 images were sampled using ffm-
peg.

e We applied a multi-step COLMAP-based pro-
cessing pipeline to generate a dense 3D point
cloud model. The most computationally intensive
step, PatchMatch stereo, requires approximately
20 minutes on a V100 GPU.

e The final output consists of images with associ-
ated camera poses and intrinsics, along with depth
maps and the 3D point cloud.

This is one of the images selected as our running test
example.

Figure 1. Ground truth image

Our ground truth data point consistent of 20
images, at resolution 720 x 1280, each with its depth
map, annotated by camera pose and intrinsics.

This process is inspired by the CO3D dataset
methodology, which we adopt to prepare our own data
point. It validates the traditional SfM approach and
provides a real-world ground truth data point for all
subsequent experiments.

This data point is fed into VGGT and pad and re-
size to resolution 518 x 518, before inference step. See
VGGT preprocess code.


https://github.com/facebookresearch/vggt/blob/main/vggt/utils/load_fn.py

4.2. Leveraging ShapeNet dataset in 3D-LMNet
model for training

ShapeNet is a repository of CAD models. We adopt
this dataset following the 3D-LMNet setup. The paired
synthesized images and point clouds serve as data
for training and evaluation. The train/validation/test
split is as follows

Dataset prepared for 3D autoencoder:
Length of train set: 26271

Length of val set: 8758

Length of test set: 8755

In addition to synthesized images, camera azimuth
angle is also provided as input the training. It acts
as a supervision signal for pose-related consistency be-
tween 2D and 3D representations, during variational
autoencoder training for point of cloud data.

5. Experiments and Results
5.1. 3D PC model via discriminative model
5.1.1 Quantitative result

Model size is in terms of number of parameters.

Model size | Inference time (5 images)
Dust3R 571M 2min8s
Fast3R 647M 2minl3s
VGGT 1.2B 1min31s

Table 1. General attributes of discriminative models

Clearly, VGGT is nearly twice as large in model size,
yet its inference speed on CPU surpasses the other two
models.

To measure the discrepancy between the 3D point
cloud generated and our COLMAP-produced ground
truth data point, we normalize both point clouds and
perform multi-step ICP alignment prior to calculating
the Earth Mover’s Distance (EMD) and Chamfer
distances.

Chamfer Distance computes the average closest-

point distance in both directions, from PC P to @,
and ) to P

1 1
D(P,Q) = — > _min|jp—q|*+—=: > min|lg—p]?
|P| o= ac@ QI 7= peP

Earth Mover’s Distance measures the minimum to-
tal cost of transporting mass between two PCD.

1
EMD(P,Q) = min_ ] pezp Ip— o)

Model Chamfer Distance | EMD
DUST3R 38.15 0.113
FAST3R 59.80 0.155
VGGT 40.86 0.108

Table 2. Comparison of 3D reconstruction models using
Chamfer Distance and Earth Mover’s Distance (EMD).
Lower is better.

Since all methods provide scene-level point clouds,
we rely on confidence level predictions to remove extra-
neous points that do not belong to the central object.
However, the metrics below indicate that this approach
is less than satisfactory. As future work, we note that
combining object masks to precisely filter pixels be-
longing to the object could yield much cleaner point
cloud reconstructions.

5.1.2  Qualitative result

COLMAP provides a reasonably smooth representa-
tion of the object as a point cloud model.

Figure 2. COLMAP produced point cloud model for the
miffy object, shown at 80 percent confidence level

The combined method using GroundingDINO, Seg-
mentAnything, and DepthAnything produces a reliable
object-specific depth map.

¢

Figure 3. Combined methods: original image, object detec-
tion, segmentation mask, depth map, masked depth map

However, our camera parameter estimations from
COLMAP and Fast3R are less accurate, which affects



the fidelity of the reconstructed 3D point cloud.

Figure 4. Combined method produced Miffy PC

DUSt3R demonstrates accurate correspondence be-
tween the two input images.

400 4

500 4
0 100

200 300 400 500

Figure 5. DUSt3R shows image correspondence.

DUSt3R produces less well-aligned point clouds
when given 5 input images. We note as future work
that post-processing techniques may help address some
of these limitations.

Figure 6. Dust3r for Miffy: using 5 images
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FAST3R demonstrates a decent reconstruction

model at a 75% confidence level.

09°

Figure 7. Fast3r for Miffy

VGGT produces the following depth map, which is
visually satisfactory.

Image 1

Depth Map 1

‘ [T 250
-
200
150
100

Depth Map 2
I

Image 2

Figure 8. VGGT produced depth map, based on 5 images.

VGGT provides a point cloud for the scene. Many
background points have low confidence levels.

Figure 9. VGGT produced point cloud model for the scene,
based on 5 images.

VGGT produces a clean point cloud model at a high



confidence level of 72%.
poses of the input images.

Five frustums indicate the

Figure 10. VGGT produced point cloud model for the miffy
object, based on 5 images.

The point cloud results are presented in the follow-
ing order: Colmap, VGGT, FAST3R, and DUST3R.
Both VGGT and FAST3R utilize 5 input images,
whereas DUST3R uses 2 input images.

e VGGT result is the best, in terms of completeness
and accuracy

e Fast3R shows artifacts, and missing cloud points

e Dust3R miss lots of points

Figure 11. CD results

5.2. 3D PC model via generative model
5.2.1 Quantitative result

Model size is measured by the number of parameters.

Model size Inference time
Point-E SO0M 5min(5) 2min(1)
LRM 260M 1m2s (1 img)
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5.2.2 Qualitative result

3D-LMNet is trained on the ShapeNet dataset, which
primarily consists of office utensils. An object like
the Miffy toy is therefore out of its training distri-
bution. With our limited training—conducted for 1
epoch and 2 epochs respectively—we observe the fol-
lowing changes in the image-conditioned generation of
the point cloud.

Figure 12. 3D-LMNet resulting PC

Point-E model produces the following point cloud
when given a single input image.

0.5 0.5 0.5
-0.5 00 .
-0.5 0.0

Figure 13. Point-E model produced PC with 1 input image

Point-E model produces this point cloud given 3 in-
put images (5 input images cause GPU out-of-memory
error).
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Figure 14. Point-E model produced PC with 3 input image

LRM model accepts only a single input image. It
generates both a NeRF representation and a mesh
model.

30

Figure 15. OpenLRM result: input image with white back-
ground, mesh model

5.3. Impact of number of input images in VGGT
model

5.3.1 Inference time

Inference time grows as O(nlogn) with the number of
input images.

12

Number of Images (n) | Processing Time (s)
1 23.8
3 30.0
5 54.8
8 114
10 152
15 282
20 415

Table 3. Processing time vs number of images

Processing Time vs Number of Images

® Measured time »
Fit: 6.71-nlogn +7.91

50 .

25 50 75 100 125 150 175 200
Number of images (n)

Figure 16. Inference time vs. number of input images for
VGGT. The observed runtime increases approximately as
O(Nlog N), indicating efficient scalability as more views
are aggregated during reconstruction.

We hypothesize that the use of FlashAttention en-
ables this improved computational complexity.

Time(n) ~ 6.71 - nlogn + 7.91

5.3.2 Reconstruction quality

Our results indicate that increasing the number of in-
put images leads to more accurate 3D reconstructions.
We measure the latency in seconds on Apple M1 ma-
chine, using CPU.



Chamfer Distance vs Number of Images

EMD vs Number of Images

25 50 75 125 150 175 200

100
Number of Input Images

Figure 17. This shows the relationship between the num-
ber of input images and the quality of reconstructed point
clouds using VGGT. As the number of images increases
from 1 to 20, both Chamfer Distance and EMD gener-
ally decrease, indicating improved reconstruction quality.
Although some fluctuations exist (e.g., at 10 images), the
overall trend suggests that more input views provide better
geometric fidelity.

The distances decrease in general, when we have
more input images.

Number of Images | Chamfer Distance | EMD
1 137.92 0.1665
3 30.63 0.0896
5 31.08 0.1084
8 29.85 0.0873
10 50.39 0.1237
15 22.40 0.0639
20 23.24 0.0679

Table 4. VGGT reconstruction quality vs. number of input
images

5.4. Attention weight in VGGT model

We call our visualization tool the VGGT Viewer.
On our machine (Mac M1), we find that it can handle
at most three layers of global attention masks before
running out of memory.

When comparing the first three and last three lay-
ers, we observe subtle differences in the attention pat-
terns. For instance, in the first three layers (top panel),
consider the comparison between image 3 in the second
row, third column and the fourth row, fourth column—
there is a noticeable difference in attention around the
lower-right region of the toy. Between the two layer
sets, these differences become even more pronounced,
highlighting distinct attention behavior across layers.
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Figure 18. VGGT global level attention where we click the
nose pixel of the miffy object: top is for first 3 layers, and
bottom is for last 3 layers

6. Conclusion

6.1. Comparison of approaches

Running the real-world ground truth data point
through all these models provides evidence that:

¢ Discriminative models excel in accuracy and speed
when given sufficient input.

o Generative models produce uncertain yet diverse
outputs, conditioned on input image(s).

o Within discriminative models:

— DUST3R achieves adequate Chamfer Dis-
tance (CD) with 2-image input but produces



unusable results with more than 2 images un- — Due to limited GCP credits and time con-
less post-global processing is applied. straints in setting up AWS V100, complet-

— Fast3R yields significantly better CD with 2+ ing training and .benchmark.ir'lg our mf)diﬁed
images, outperforming DUST3R slightly. 3D-LMNET against the original version re-

) ) . . mains an important future project to provide
B VGGT dehvel-rs high-fidelity CD fo.r 2+ in- insights into model design choices.
put images without compromising inference

speed. 7. Appendices
o Within generative models: 7.1. Video
— 3D-LMNET effectively generates similar LRM generated mesh video and VGGT generated
point clouds within categories represented in PLY file are shared in this Google drive public folder.
the ShapeNet dataset. You can use a web based PLY viewer like here to view
PLY file.

— Point-E can utilize multiple images as prior
and produces scenes increasingly resembling 7.2. List of code

the input th ber of i i .
e inputs as the number of images increases Code content

— LRM accepts a single input image and pro- Step0lco3dview.ipynb
duces an adequate mesh result at a speed explore (O dataset
comparable to VGGT, while using only one-

Step02—dust3r—inference.ipynb
run dust3r inference on 2 and 5 images

sixth of the model size. Step03_fastr ipynb
run fast3r inference on 5 images
We also demonstrate that: Step0d—vegt.ipynb

run vggt inference on 5 images

e The 3D-LMNET model can be modified to en- Step05—colmap. ipynb
calculate Chamfer distance and EMD
hance both its image feature extractor and Point- )
Step06-ShapE.ipynb

Net encoder eXpreSSiveneSS. shapE inference, text to model

Step07—3ddmnet-dino-dgenn. ipynb
train, eval and inference on 1 image

e It is possible to extract the global attention distri-

. . . . . Step08-Gi di INO-SingleImage. i b
bution values at inference time and visualize them NG inglelimage.ipyx
to understand the relative impact of different in- Step09-Segment Anything predictor_example. ipynb

put images on the generation of a single 3D point. bost SAM

Stepl10-DepthAnything-test—depth—anything.ipynb
test DepthAnything

6.2. Further study
Step11-Combined.ipynb
combine above 3 to infer 3D model from 1 input image

These directions merit further exploration:
Stepl2-pointe—image2pointcloud.ipynb
infer 3D PC from 1 image

® More preCISe metrlc Calculatlon Extra code for VGGT modification:

demo_ viser.py and attention.py
— Utilize object masks to accurately define the Extra code for DGONN and DINO integration to SDIMNET
ground truth object model, potentially sup- plus training and 1 image conditioned 3D PC generation code.
plementing confidence scores for selecting
point cloud segments belonging to the target 8. Contribution and Acknowledgement

object. . . .
We would like to express our sincere gratitude to

e Deeper analysis of VGGT the authors of the following code projects, whose work

enabled us to extend and build this valuable project.
— Upon availability of VGGT training code, ap-

ply methods such as Grad-CAM for regres- 1. Dust3r repo
sion tasks to investigate the alignment mech-
anisms within VGGT.

— Leverage VGGT’s tracking head to identify

2. Fast3r repo
3
corresponding 2D points for given 3D points 4
5
6

. VGGT repo

. Bd-lmnet-pytorch repo
on the point cloud and study their relation- Y P

ship with Grad-CAM results. . GroundingDINO repo

e Further tuning of the 3D-LMNET model . SAM repo
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